CH-89-4-3

An Industry Standard Language for DDC
Systems: A Look at the “C” Language

J.D. Petze
ASHRAE Associate Member

S. Chaudry

ABSTRACT

Continued development and acceptance of direct
digital controf (DDC) systems, coupled with growing so-
phistication of end users, has resulted in a call for stan-
dards in the DDC industry. One result is the initiation of
research into the development of standard communica-
tion protocols for controller-to-controller and controller-to-
host communications. Another development is interest in
a standard programming language for these systems.

This paper looks at the issue of a standardized pro-
gramming language, and analyzes the feasibility of using
the welfl-known programming language “C” as the stan-
dard. Because of its history of use in the development of
computer software, it is often assumed that “C” is difficult
to work with. This paper shows how understandable and
English-like “C” can be when used for building control ap-
plications, i.e., start/stop control sequencing, interlocking,
proportional-integral-derivative control of modulating
equipment, etc. The “C” language also lends itself to the

easy development of functions to accomplish com-

monplace or repetitive tasks and provides a looping func-
tion that allows multiple sets of points to be assigned to
a single program. In addition, the primary commands and
instructions of the language can be easily redefined to
match the jargon of building control.

THE ISSUE OF STANDARDIZATION

Continued acceptance of direct digital control (DDC)
as the optimum method of accomplishing automatic
temperature control and energy management in buildings
of all types has exerted a maturing influence on DDC
manufacturers and users. One of the results is an inevitable
desire for more “commonality” or standardization among
various manufacturers’ products. The most notable
evidence of the interest in standards is the current activity
surrounding the adoption of an “open” communications
protocol for controlier-to-controller and host-to-controller
communications (ASHRAE Committee, 135 p). Another
potential area for standardization among DDC systemsiis
that of the programming language used to create control
algorithms. While much of the activity on the issue of stan-
dardsisled by large users of DDC systems, i.e., universities,

real estate management firms, and other corporations
responsible for alarge number of buildings, a standardiz-
ed programming language would offer benefitsto all users,
large and small.

Two Important Notes

Before proceeding further it is important to touch on
two important items. The issue of a standardized program-
ming language applies primarily to fully user-program-
mable systems capable of complete direct digital controt
of the building environment and implementation of custom
control strategies unique to the individual installation. Also,
it is important to note that we are referring to standardiza-
tion of the programming language used to develop the ac-
tual control strategies executed by the DDC system—the
instructions that operate the building equipment. These
algorithms are written by the application programmer. The
operator interface for daily building operation is a different
area of interaction and would not be affected. Manufac-
turers would still be able to focus their competitive activities
on development of new operator interface tools—the
means by which setpoints, schedules, or other parameters
are changed, alarms acknowledged, and other manual in-
tervention accomplished. This scenario, a standard
language used by various manufacturers to provide differ-
ing operator environments, closely parallels the way
languages such as C, Pascal, Cobol, and others are used
in the computer software market to develop competing
products for word processing, spreadsheet analysis,
graphics, and CAD applications. The presence of widely
accepted language standards has been essential to the
growth of this market.

BENEFITS OF A STANDARD PROGRAMMING
LANGUAGE

A number of significant benefits can be offered by a
standardized programming language. These benefits can
be placed intwo categories: the learning curve and com-
patibility of program structure.

The Learning Curve

As technology advances, we all are affected by the in-
formation explosion— too much to learn, too much to

J.D. Petze, C.E.M., Vice President of Products and Services for Teletrol Systems, Inc., Manchester, NH; S. Chaudry, Senior Systems
Engineer, Teletrol Systems Inc., Manchester, NH.

know. The operations staff of a building and the controls
staff of a mechanical contracting firm are no exception.
One of the ohvious benefits of a standardized language is
a significant reduction in the time it would take to become
familiar with systems from different manufacturers. The dif-
ferences would be reduced to the areas of hardware, in-
stallation, and user interface for daily operator activities.

Use of a standard language would also mean that
training would be available from more than one source
resulting in an increase in the availability of experienced
programmers. This, inturn, would mean that the impact of
employee turnover would be reduced for both the contrac-
tor installing DDC systems and the facilities staff operating
them.

Compatibility Of Program Structure

Anocther, more subtle advantage offered by a standar-
dized programming language would be the compatibility
of programs from installation to installation regardiess of
manufacturer selected. As an example, assume that you
are a building manager with a specific piece of equipment
to be controlled, for example, an air handler. The algorithms
to be performed are clearly defined in accordance with the
type of air handler and the environmental requirements of
the facility. They have no bearing on the specific DDC
manufacturer chosen (assuming, of course, that the equip-
ment chosen provides the programming flexibility to imple-
ment the desired strategies). The program instructions to
accomplish the specified control strategies, however, can
be radically different due to the difference in the way logic
constructs are used by various languages. This presents
a problem for the person trying to read and understand a
program as well as for the programmer.

EXAMPLES OF LOGIC CONSTRUCT DIFFERENCES

Some languages utilize an IFF THEN/GO TO format:
If X is true then go to a specified line of the program to per-
form a specified instruction.

Ancther language uses a THEN/IF/GO TO format:
Do A, then if X is true go to a specified line to perform a
specified instruction.

Others use an IFFTHEN/ELSE format:

If Xistrue do A, otherwise do B.

Although subtle, these different formats affect the
structure of a control program. Another significant dif-
ference among languages is the difference between "fall-
through” execution and “one-line-at-a-time” execution.

Ina “fall-through” (FT) type language every line of the
control program is executed on every program scan. “One-
line-at-a-time” (OLAT) means that only one line of an in-
dividual control program is executed on every program
scan. There are advantages and disadvantages to both.
Speed of decision making is almost always faster with FT
languages; a complex logical decision can be made in one
prograrm scan. Sequential action algorithms, onthe other
hand, are typically easier to implement with OLAT
languages. The execution of the language lends itself to a
“do this then wait until next time” sequence of events.

The relative merits of the two are not the issue here;
successful systems of both types are offered by different
manufacturers. The point here is that two very different pro-

gramming approaches are required to accompiish the
same strategy using the two different types of languages.
The following examples of a simple thermostat control
algorithm will demonstrate the formation of a program us-
ing both fall-through and one-line-at-a-time execution.

Program for Simple Thermostat Control Using One
Line At A Time Execution
LINE 1

OFF FAN, HEATING, COOLING

GOTO2IF TEMP < 680

GO TO3IF TEMP > 760

LINE 2
OFF, COOLING
ON, FAN, HEATING
GOTO 1 IF TEMP > 700

LINE 3
OFF, HEATING
ON, FAN, COOLING
GOTO1IF TEMP < 740

fnthis program each line represents one of the three
possible control states. Line 1 is the off position. No
heating, cooling, or fan operation is provided in this state.
Line 2is heating mode, and Line 3 is cooling mode. Con-

~ trol of the outputs fan, heating, and cooling moves from line

to line based on the value of the input temperature. Only
onelineis executed on any one program scan. The follow-
ing program accomplishes the same strategy using a fall-
through language.

Program for Simple Thermaostat Control Using Fall
Through Execution:

/* Heating Mode */

568

IF TEMP BELOW 680 THEN
TURN {COOLING, OFF);
TURN (HEATING, ON);

END__IF

/* Cooling Mode */

IF TEMP ABOVE 760 THEN
TURN (HEATING, OFF);

- TURN (COOLING, ON);

END__IF

/* End Heating Mode When Temp is Satisfied */

IF HEATING IS ON AND TEMP ABOVE 70.0 THEN
TURN (HEATING, OFF);

END_IF

/* End Cooling Mode When Temp is Satisfied */

IF COOLING 1S ON AND TEMP BELOW 740 THEN
TURN (COOLING, OFF);

END__IF

/* Turn On fan When Heating or Cooling is On */
IF HEATING IS ON OR COOLING IS ON THEN
TURN (FAN, ON);
ELSE
TURN (FAN, OFF});
END__IF

In this program each “IF” statement represents one
of the possible states of the program. All of these “IF”
statements are evaluated when the entire program is ex-
ecuted each scan. Only the true "IF” statement(s) will be
executed.

Virtually all high-level programming languages ac-
cepted in the software marketplace today utilize the fall-
through execution format. Most programmers are familiar
with this type of language format.

OVERVIEW OF MAJOR PROGRAMMING
LANGUAGES

The following is an overview of some of the languages
that have either an historical significance or an important
application in the microcomputer environment.

FORTRAN: This was the first high-level language. itis
a popular scientific language because of its facility for
number crunching and good array-handling features.

COBOL.: This is one of the most widely implemented
computer languages. Its primary use is in business ap-
plications. COBOL is intrinsically self-documenting
because of its English-like syntax.

BASIC: Originally created to teach programming to
students, it is still extensively used for educational pur-
poses. BASIC is easy to understand and learn and thusis
widely used for small business applications.

PASCAL: Like BASIC, this language was created to
teach students the art of programming. Pascal produces
highly structured programs that are easy to foliow and
maintain. It is extensively used on microcomputers.

LISP: The list data type is the basic element of this
language. LISP is used for many artificial-inteliigence
appilications. :

ALGOL: This was the first block-oriented language. It
is used mainly for mathematical problem-solving.

PROLOG: This is a logic-oriented language and is us-
ed primarily for artificial-intelligence applications.

MODULA-2: Thisis an enhanced version of Pascal. It
is a multiprocessing language in that coroutines may be
executed simultaneously.

RPG: Thisis a nonprocedural language used mainly
for producing business reports.

ADA: This is based on Pascal and was developed
orimarily for the Defense Department's weapons systems
tracking. It is not used for many other applications
throughout the federal government.

SMALLTALK: This is an object-oriented language.

High Level/Low Level

Programming languages are often classified as "'low
level” or "high level.” Assembly language, for example, is
classified as a low-level language because it translates
directly into the machine code that the processor inter-
prets. High-level languages are characterized by compilers
that translate the instructions written by the programmer in-
to machine-readable code. They also typically include
built-in functions that perform routine tasks such as reading
and writing of data to the screen or the printer. In this
respect C can be considered a low-level language
because it does not include these types of functions. This,
however, is not a disadvantage because C provides the
flexibility to build these functions based on particular
needs.

Of all of these languages C is the most widely used
anditisthe authors’ opinionthatitis the most appropriate
for building control applications.

569

““C”’ AS A STANDARD LANGUAGE
A Brief History

C is a general-purpose language that features
economy of expression, modern control flow and data
structures, and a rich set of operators. C is not specialized
to any particular area of application. Its absence of restric-
tions and its generality, however, make it more convenient
and effective for many tasks than supposedly more power-
ful languages that are highly specialized for specific
applications.

C was designed by Dennis Ritchie in 1972 (Kernighan
and Ritchie 1978). It was originally designed for systems
programming—thatis, for writing programs like compilers,
operating systems, and text editors. But it has proven quite
satisfactory for other applications as well, including
database systems, telephone-switching systems, numer-
ical analysis, engineering programs, and a great deal of
text-processing software. Today, C is one of the most widely
used languages in the world, and C compilers exist for
almost every computer (Kernighan and Ritchie 1988).

Standardization of C Itself

With so large an application base in the computer in-
dustry, the compatibility of the various C compilers on the
market is an important issue. In 1983 the American Na-
tional Standards Institute (ANS!) established a committee
to provide acomprehensive specification for C. The ANSI
standard that defines what is known as ANS! C is expected
to be approved in 1988. C compilers onthe market support
most of the features of this standard.

The Advantages Of ‘C’’ —How Does It Address
The Standardization Issues?

General Suitability. Any potential standard lang-
uage must possess certain essential features in order to be
able toimplement the strategies required in DDC applica-
tions. It will need math capability (preferably floating point
math with addition, subtraction, multiplication, division,
and square root as a minimum), Boolean algebra (the abil-
ity to combine math and trueffalse logic in expressions; this
is also known as “mixed mode” or “conditional” arith-
metic), iffthen or ifithen/else decision-making capability,
common logic operators and comparators (and, not, or,
greater than, less than, equal to, greater than or equal to,
less than or equal to, not equal to), and timers (the ability
to utilize time delays in programs for sequencing and
minimum on/off time strategies).

The “C” programming language meets all of these re-
quirements and provides other significant features.

Features to Help the Application Programmer.

Extensive Program Documentation. The "C"
language provides the capability to clearly document pro-
grams. Control sequences can be explained in detail us-
ing comments on a line-by-line basis. There is no limitio the
size or number of comments used in a program. This
means comments can be comprehensive enough to truly
explain the program to the reader.

English-Like Vocabulary. While the textbook
vocabulary of the "C” language includes items such asint,

{, 1=, = &&, and ||, “C” provides the ability to “alias” all
of its commands with English words. A complete English
vocabulary can be easily built by the DDC manufacturer,
the controls contractor, or the end user. The result is pro-
gramming that reads very English-like, for example:

IF TEMP1 ISNT SETPOINT1 THEN SET (HVACT, TO
ON);

The following table shows English aliases for some of
the C commands and operators.

C Command or Operator English Alias
> ABOVE, AFTER
< BELOW, BEFORE
== IS, EQUALS
f= ISNT (Not equal to)
&& AND
] OR
if IF
} END__IF

The Learning Curve. C, like all languages, has a
specific structure and syntax that must be used for proper
operation, so by itself it does not eliminate the learning
curve. The advantage of C, however, is that it is taught at col-
leges and universities around the world. This ensures ac-
cess to the necessary training and greatly expands the
potential work force, because, while the selection and
specification of control strategies requires a thorough
understanding of HVAC systems, the development of the
actual algorithm is more dependent on knowledge of the
language syntax and structure. Inthis respect, C presents
the opportunity for a single experienced HVAC engineer
tolead a group of programmers in development of applica-
tion programs for various installations. It also means that
C goes beyond national language barriers.

Creating High-Level *‘Library’’ Functions Using
C. One of the mostimportant features of the C language
is that it can be used to create a language within itself.
Repetitive or commonly used tasks can be handled by
creating library functions. When “calied” by the program,
the library function executes a predefined piece of code
resulting in a specific action. As an example, consider a
simple time-of-day-based on/off control algorithm. The
following program entries, which are written in C using an
English vocabulary, will turn an output named LIGHTS on
when the time of day is between 800 and 1700 hours.

/* Control of LIGHTS Based on Time of Day */

[F TIME AFTER 800 AND TIME BEFORE 1700 THEN
TURN (LIGHTS, ONy;

ELSE
TURN (LIGHTS, OFF);

END__IF

While this program is quite straightforward, it would be
desirable to have a simple-to-use high-lfevel function for
time-based on/off control applications. For example,

TIMECONTROL(LIGHTS, 800, 1700y,

Using this function the programmer specifies the
name of the output to be controlled and the start and stop
times. The program passes these arguments (output
name, start time, and stop time) to the library function when
it is executed.

570

Because C lets the programmer create library func-
tions like this, the DDC manufacturer, controls contractor,
or facilities engineer ¢an, in effect, create his or her own
“language” of special functions that make the program-
ming process even easier. These functions can be chang-
ed and enhanced because they are not locked away in fac-
tory “burned” EPROM but are an actual part of the control
program. Thisis an extremely powerful capability that can
be used by the manufacturer, contractor, or end user to
enhance the programmability of the system while not affec-
ting support. C stands out among other languages in its
ability to create library functions of this type. Pascal and
some other languages provide a simitar but much more
limited library function capability. Notably, they cannaotim-
plement functions that have variable-length argument lists.

“‘Looping’’ of Functions. Another feature of C that
offers significant benéefits to the application programmer is
the ability to “loop” multiple sets (an array) of points into
programs. As an example, consider the lighting control
program discussed previously.

/* Control of LIGHTS based on Time of Day */

IF TIME AFTER 800 AND TIME BEFORE 1700 THEN
TURN (LIGHTS, ONj;

ELSE
TURN (LIGHTS, OFF);

END_IF

As written, this program controls one output named
LIGHTS. With slight modification, however, this program
can be used to control a number of lighting circuits. The first
step is to create an array of the lighting outputs to be con-
trolled. Thisis done by naming the points using the follow-
ing convention: LIGHTS [1}, LIGHTS [2], LIGHTS[3],
LIGHTS[4], LIGHTS[5]. For this example we will assume we
have five lighting circuits to control.

We will now use the “loop” instruction to execute the
lighting control program for all five lighting circuits.

* Control of Lighting Circuits 1-5 Using Loop Statement */

INTEGER Liteno;

/* This defines a variabie to hold the lighting circuit num-

ber */

LOOP (Liteno, FROM 1, TO 5)

IF TIME AFTER 800 AND TIME BEFORE 1700 THEN
TURN (LIGHTS[Liteno}, ONJ;

ELSE

TURN (LIGHTS][Liteno], OFF);

END__IF
END__LOOP

This single program will now be executed for all five
lighting circuits. This technigue eliminates the need to write
the program over for each lighting output.

This simple example of looping assumed that all five
lighting circuits were on the same schedule. If independent
start/stop times were desired, the looping function could
still be used to control all five circuits. To accomplish this,
itis necessary to define variables to hold the start/stop times
for the five zones. These variables would use the [#] nam-
ing convention to allow them to be looped in the program.
The following example demonstrates.

/* Control of Lighting Circuits 1-5, Independent
Schedule for each Circuit ¥/

/* Define variables to hold start/stop times for each of the
lighting circuits */
INTEGER Liteon [6] = {0, 800, 830, 630, 700, 700};
INTEGER Liteoff [6] = {0, 1700, 1800, 2000, 1700,
2200};
/* Define variable to hold lighting circuit number */
INTEGER Liteno;
/* Loop Control Program for all Lighting Circuits */
LOOP (Liteno, FROM 1, TO 5)
IF TIME AFTER Liteon{Liteno] AND TIME BEFORE
Liteoff[Liteno] THEN
TURN (LIGHTS][Litenc], ON);
ELSE
TURN(LIGHTS[L.iteno), OFF);
END__IF
END__LOOP

Off-Line Programming. Use of C as a language
allows programs to be written off-line from the DDC con-
troller The control program is written on a workstation (per-
sonal computer) as a text file using a word processor editor.
Once complete, the text file (source code) is compiled us-
ing a C compiler. The compiler checks for syntax and for-
mat errors and creates a downloadable object code file.
This file is then downloaded to the controller at the ap-
propriate time. Off-line programming and the use of a full-
function word processing editor enhance the efficiency of
the programming process. The programmer is not re-
quired to learn and work with a “limited” editor common
to many DDC systems. in addition, the contractor does not
have to have a DDC controller available for each of his pro-
grammers to work on.

A Language That is a Match for the User. Theuse
of a programming language such as C for development of
control programs in DDC systems makes even more sense
when you look at the type of people who will be using it.
Two groups of people interface with building control
systems: system programmers and building operators.
System programmers analyze the building equipment and
create appropriate control algorithms. Building operators
manage the day-to-day operations of the building. Their in-
terface with the system focuses on system tuning and the
change of control parameters such as start/stop times, set-
points, alarm limits, etc. Their interaction with the system
does not involve the generation of control algorithms.

Because building operations personnel reguire so
much specialized knowledge in other areas, such as HVAC
equipment, maintenance and repair, and tenant en-
vironmental requirements, their job typically does not allow
the time to become proficient in a programming language.
This factis made clear by the facilities management staffs
as they evaluate potential systems. They look for simplici-
ty because the people operating the system on a daily
basis will not be programmers. While the case of the
building operator/programmer is sometimes found, itisthe
exception, not the rule. Although not responsible for pro-
gramming of control algorithms, some building operators
may, however, want to be able to read and understand
them. Here the powerful commenting features of the C
language offer a significant benefit.

The systems programmer then is a technically com-
petent person most often with some form of computer
education or experience and familiar with the techniques
of creating control programs. A powerful, standardized
language with wide acceptance inthe computer industry
is the right match for this person.

Potential Disadvantages of C

While offering many advantagesitis alsc important to
note C's potential disadvantages. Use of C as a program-
ming language for DDC systems requires the use of an in-
telligent workstation for the programmer, as opposedto a
dumb terminal. The workstation has to have the C compiler
running on it in order to create the downloadable object
code version of the control program.

C is so flexible that it does not force a programming
style or structure on the programmer. It is possible to write
very sloppy programs in C, whereas more structured
languages force certain formats and methodologies on the
programmer. Good training of proper style will prevent
these problems, however.

C allows the programmer to do things that, aithough
legal to the compiler, may cause the computer to reset or
“hang” or do other unexpected things when they are ex-
ecuted. Examples include the creation of endless loops,
“weak’ type checking that allows the wrong type of data
to be passedto alibrary function, and exceeding array in-
dex limits. The programmer can create arrays of any size
desired in C and could then exceed the index limit size of
the array in the control program. This is a problem that
would not occur untit actual runtime of the program.

Off-line programming, while offering many advan-
tages, has a drawback. Because C is acompiled language
it is necessary to recompile and reload the program after
making changes to the control algorithms. Thisforcesthe
programmer to think out the system program more careful-
Iy to minimize time spent recompiting and reloading.

CONCLUSION

Adoption of a standard programming language for
the DDC industry will offer a number of benefits to installers
and end users of DDC systems. It would reduce the learn-
ing curve between systems from various manufacturers
and increase the number of available programmers.

As shown in this paper, C is a strong potential can-
didate for use as the standard language. It is currently the
most widely used programming language and provides
the application programmer with an English-like
vocabulary, the ability to clearly document control pro-
grams, and create functions to perform commonly used
control tasks.

While other languages may exist that lend themselves
to the tasks found in DDC programming they do not cur-
rently enjoy widespread acceptance, which is animportant
issue when choosing a standard.

REFERENCES

Kernighan, BW., and Ritchie, D.M. 1978. The C programming
language.
Kernighan, BW., and Ritchie, D.M. 1988. Byte, Vol. 13, No. 8.

DISCUSSION

Z. Zhang, Engineer, lowa DNR, Des Moines, IA: I C is the win-
ner, what would be the second runner-up? Can you give a rough
idea about the share of “C” in the DDC industry compared with,
say, Quick Basic and others.

J.D. Petze: | would like to turn this question over to my co-author
S. Chaudry.

S. Chaudry: | do not have figures on the share of the market that
C has inthe general computer industry. Quick Basic, while a very
popular language, does not have the same features as C. Oneim-
portant feature it does not have is the ability to develop functions
that accept variable-length arguments.

572

B. Chapman, ASI Controls, San Ramon, CA: Do you foresee
manufacturers publishing code modules written in C to facilitate use
of this language in conjunction with their hardware?

Petze: Yes i do. One of the benefits of the C language is that it will
allow both manufacturers and system integrators to develop library
functions (code modules) to handle new applications as they are
needed. In this way the capabilities of a system can continue to
evolve without changing the internal operating firmware.

| think it will also open up an aftermarket for engineering
houses to publish proven control strategies and algorithms. It will
also provide a new area of competition among manufacturers.

